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Abstract. We studied chiral phase transition in the linear sigma model within the Tsallis nonextensive
statistics in the case of small deviation from the Boltzmann-Gibbs (BG) statistics. The statistics has
two parameters: the temperature T and the entropic parameter q. The normalized q-expectation value
and the physical temperature Tph were employed in this study. The normalized q-expectation value was
expanded as a series of the value (1− q), where the absolute value |1− q| is the measure of the deviation
from the BG statistics. We applied the Hartree factorization and the free particle approximation, and
obtained the equations for the condensate, the sigma mass, and the pion mass. The physical temperature
dependences of these quantities were obtained numerically. We found following facts. The condensate
at q is smaller than that at q′ for q > q′. The sigma mass at q is lighter than that at q′ for q > q′ at
low physical temperature, and the sigma mass at q is heavier than that at q′ for q > q′ at high physical
temperature. The pion mass at q is heavier than that at q′ for q > q′. The difference between the pion
masses at different values of q is small for Tph ≤ 200 MeV. That is to say, the condensate and the sigma
mass are affected by the Tsallis nonextensive statistics of small |1−q|, and the pion mass is also affected
by the statistics of small |1− q| except for Tph ≤ 200 MeV.

PACS. 25.75.Nq Quark deconfinement, quark-gluon plasma production, and phase transitions –
11.30.Rd Chiral symmetries – 25.75.-q Relativistic heavy-ion collisions – 05.70.Fh Phase transitions:
general studies

1 Introduction

Power-like distributions have been interested by many
researchers. A statistics called the Tsallis nonextensive
statistics [1] was proposed to describe power-like distri-
butions. The Tsallis nonextensive statistics has two pa-
rameters: the temperature T and the entropic parameter
q, and the deviation from the Boltzmann-Gibbs statistics
is measured with |1 − q|. Some definitions of the expec-
tation value were proposed in the statistics [2]. One of
them is called normalized q-expectation value. The phys-
ical temperature Tph [1, 3–8] is often used to describe
phenomena in the statistics. Power-like nature has been
studied within the framework of the Tsallis nonextensive
statistics.

Power-like distributions have been used to describe
momentum distributions in high energy collisions. Many
researchers have studied momentum distributions, and
have used Tsallis-type distributions [9–26]. It has been
reported that Tsallis-type distributions describe well mo-
mentum distributions. The value of q was estimated in
these studies. The deviation from the Boltzmann-Gibbs
statistics is small at high energies, and the values of |1−q|
are close to 0.1. The effects of the small deviation from
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the Boltzmann-Gibbs statistics on physical quantities,
such as correlation and fluctuation [22,26–29], have been
studied.

Chiral symmetry restoration is an interesting topic in
high energy heavy ion collisions, and it is believed that
the symmetry is restored at high energies. The expecta-
tion value of a physical quantity, such as the square of a
field, is affected by momentum distributions. The effec-
tive potential depends on momentum distributions, and
the symmetry restoration is also affected by momentum
distributions. Therefore, the power-like distribution like
the Tsallis distribution may change the values related
to the chiral symmetry: the condensate and the masses.
The phase transition of chiral symmetry is an attractive
topic in the Tsallis nonextensive statistics [30–35].

In this paper, we studied the physical temperature
dependences of the condensate, the sigma mass, and the
pion mass for various q in the linear sigma model within
the framework of the Tsallis nonextensive statistics of
small |1 − q|. We adopted the normalized q-expectation
value. We applied the Hartree factorization and the free
particle approximation that the Hamiltonian in the den-
sity operator is replaced with the free Hamiltonian. We
calculated the physical temperature dependences of the
condensate, the sigma mass, and the pion mass for var-
ious q. We found that the chiral symmetry restoration

http://arxiv.org/abs/1909.02176v1
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at q occurs at low physical temperature, compared with
the restoration at q′, for q > q′. Moreover, the difference
between the pion mass at q and the pion mass at q′ is
small at low physical temperature.

This paper is organized as follows. In sect. 2, we de-
rive the gap equations in the linear sigma model in the
Tsallis nonextensive statistics of small |1− q|. The phys-
ical temperature is introduced, and the normalized q-
expectation value of a quantity is expanded as a series of
(1−q). The equations for the condensate and the masses
are derived in the Hartree factorization and the free par-
ticle approximation. In sect. 3, the derived self-consistent
equations are solved numerically. The physical temper-
ature dependences of the condensate, the sigma mass,
and the pion mass are calculated for various q. The last
section is assigned for the discussion and conclusion.

2 Chiral phase transition in the linear sigma

model in the Tsallis nonextensive statistics

2.1 Tsallis nonextensive statistics within (1 − q)
expansion

We begin with the brief introduction of the Tsallis nonex-
tensive statistics. The density operator ρ in the statistics
is given by [1, 5]

ρ := (Zq)
−1 ρu, (1)

ρu =

[

1− (1− q)
β

cq
(H − 〈H〉q)

]1/(1−q)

,

Zq := Trρu,

where β is the inverse temperature, q is the entropic pa-
rameter, cq is a constant, and H is the Hamiltonian,
〈H〉q is the normalized q-expectation value of the Hamil-
tonian. The q-expectation value of a quantity A in the
Tsallis nonextensive statistics is defined by

〈A〉(β)q :=
Tr(ρqA)

Tr(ρq)
. (2)

The constant cq is related to the partition function Zq:

cq = (Zq)
1−q. (3)

The q-dependent values are expanded as series of ε ≡
1− q to proceed the calculation [29, 35].

〈H〉(β)q = E[0] − εE[1] +O(ε2), (4a)

cq = c[0] − εc[1] +O(ε2), (4b)

Zq = Z[0] − εZ[1] +O(ε2), (4c)

where we attach the subscript [j] to the coefficients of εj .
It is obvious from eq. (3) that the constant c[0] is 1. We
note that the coefficient cq is a function of β. We attach

the superscript β to cq as c
(β)
q : c

(β)
q = 1− εc

(β)
[1] +O(ε2).

The inverse physical temperature βph is defined by

βph := β/c(β)q . (5)

The inverse temperature β is represented as a series of
ε:

β = βph − εc
(βph)

[1] βph +O(ε2). (6)

The (1−q) expansion of the normalized q-expectation
value of the quantity A [29] is given by

〈A〉(β)q = 〈A〉(βph)
q=1 + ε

{

βph

(

1 + βphE
(βph)

[0]

)

×
[

〈HA〉(βph)
q=1 − 〈H〉(βph)

q=1 〈A〉(βph)
q=1

]

− 1

2
(βph)

2
[

〈H2A〉(βph)
q=1 − 〈H2〉(βph)

q=1 〈A〉(βph)
q=1

]}

+O(ε2). (7)

The number of the particles of a field ϕs with the
momentum k and the particle mass ms is given by sub-

stituting A = nsk ≡ a†skask into the previous equation,

where a†jk and ajk are creation and annihilation opera-
tors of a field ϕj respectively, with the commutation rela-

tion [aik, a
†
jl] = δi,jδk,l. We employ the free Hamiltonian

to calculate the number of the particles with momentum
k. The free Hamiltonian Hf of N -fields is

Hf =

N−1
∑

i=0

Hf
i , (8)

Hf
i :=

∫

dx

[

1

2
(∂0ϕi)

2 +
1

2
(∇ϕi)

2 +
1

2
m2

i (ϕi)
2

]

.

The number of the particles with the momentum k

for the field ϕs in the case of the free Hamiltonian is
given by [35]:

〈nsk〉(β),fq

= 〈nsk〉(βph),f
q=1

+ ε
{

(βphωsk)
(

1 + (βphωsk)〈nsk〉(βph),f
q=1

)

×
[

〈(nsk)
2〉(βph),f

q=1 −
(

〈nsk〉(βph),f
q=1

)2
]

− 1

2
(βphωsk)

2
[

〈(nsk)
3〉(βph),f

q=1

− 〈(nsk)
2〉(βph),f

q=1 〈nsk〉(βph),f
q=1

]}

+ O(ε2) (9a)

=
1

exp(βphωsk)− 1
+ ε

{

(βphωsk) exp(βphωsk)

[exp(βphωsk)− 1]
2

− (βphωsk)
2 exp(βphωsk) [exp(βphωsk) + 1]

2 [exp(βphωsk)− 1]
3

}

+O(ε2), (9b)

where we attach the superscript f to clarify that the
free Hamiltonian is adopted in the density operator.

The (1−q) expansion of the normalized q-expectation

value 〈(ϕj)
2〉(β),fq to the O(ε) is obtained by using eq. (9):
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〈(ϕj)
2〉(β),fq

=
1

V

∑

k

(

1

2ωjk

)

+
1

V

∑

k

(

1

ωjk

){

1 + ε

[

(βphωjk)−
1

2
(βphωjk)

2

]}

× 1
[

exp(βphωjk)− 1
]

+
1

V

∑

k

(

1

ωjk

)

ε

[

(βphωjk)−
3

2
(βphωjk)

2

]

× 1
[

exp(βphωjk)− 1
]2

+
1

V

∑

k

(

1

ωjk

)

(−ε)(βphωjk)
2 1
[

exp(βphωjk)− 1
]3

+O(ε2). (10)

We define the following function F (x; a, b) to simplify the

expression of 〈(ϕj)
2〉(β),fq :

F (x; a, b) :=

∫ ∞

0

dy y2
(y2 + x2)a/2

[

exp(
√

y2 + x2)− 1
]b
. (11)

We also define the variable xj by

xj := βphmj . (12)

The quantity 〈(ϕj)
2〉(β),fq is expressed with the function

F (x; a, b) as V approaches infinity.

〈(ϕj)
2〉(β),fq

=
1

4π2(βph)2
F (xj ,−1, 0) +

1

2π2(βph)2

{

F (xj ,−1, 1)

+ ε

[

F (xj ; 0, 1)−
1

2
F (xj ; 1, 1) + F (xj ; 0, 2)

− 3

2
F (xj ; 1, 2)− F (xj ; 1, 3)

]}

+O(ε2). (13)

The above result is used in the next subsection.

2.2 Gap equations in Hartree factorization

In this study, we use the linear sigma model to study the
chiral phase transition. The Hamiltonian H of the linear
sigma model is

H =

∫

dx

[

1

2
(∂0φ)2 +

1

2
(∇φ)2

]

+

∫

dxVpot(φ), (14a)

Vpot(φ) =
λ

4
(φ2 − v2)2 −Gφ0, (14b)

where φ ≡ (φ0, φ1, · · · , φN−1), φ
2 ≡ ∑N−1

j=0 φ2j , and (∂iφ)2 ≡
∑N−1

j=0 (∂iφj)
2. The quantities, λ, v, and G, are the pa-

rameters of the linear sigma model. We shift the fields as
φj = φjc + ϕj , where the quantity φjc is the condensate
of the field φj . The Hamiltonian is given by

H =

∫

dx
∑

j

[

1

2
(∂0ϕj)

2 +
1

2
(∇ϕj)

2

]

+

∫

dxVpot(φj = φjc + ϕj) (15a)

=

∫

dx
∑

j

[

1

2
(∂0ϕj)

2 +
1

2
(∇ϕj)

2 +
1

2
m2

jϕ
2
j

]

+

∫

dxVpot(φj = φjc + ϕj)−
∫

dx
∑

j

(

1

2
m2

jϕ
2
j

)

.

(15b)

where it is assumed that φjc is uniform and independent
of time. The mass mj for the field ϕj is discussed later.

The Hartree factorization [36, 37] is applied to the
above Hamiltonian, and the potential term Vpot in the
Hartree factorization is given by

V HF
pot (φj = φjc + ϕj)

=
λ

4

{

(φ2c − v2)2 − (〈ϕ2〉)2 − 2

N−1
∑

i=0

(

〈ϕ2
i 〉
)2

}

−Gφ0c

+
λ

4

{

[

2(φ2c − v2) + 4〈ϕ2〉
]

(φc · ϕ)

+ 8

N−1
∑

i=0

φic〈ϕ2
i 〉ϕi

}

−Gϕ0

+
λ

4

{

[

2(φ2c − v2) + 2〈ϕ2〉
]

ϕ2 + 4(φc · ϕ)2

+ 4

N−1
∑

i=0

〈ϕ2
i 〉ϕ2

i

}

. (16)

where the representation (φc · ϕ) indicates
∑N−1

j=0 φjcϕj .

The notation 〈O〉 is the expectation value of a quantity
O. The Hamiltonian in the Hartree factorization is given
by

HHF =

∫

dx
∑

j

[

1

2
(∂0ϕj)

2 +
1

2
(∇ϕj)

2 +
1

2
m2

jϕ
2
j

]

+

∫

dx V HF
pot (φj = φjc + ϕj)

−
∫

dx
∑

j

(

1

2
m2

jϕ
2
j

)

. (17)

We apply the free particle approximation that the
Hamiltonian is replaced with Hf , eq. (8), in the den-
sity operator. The potential UHF({φjc}, {mj}) with the
normalized q-expectation value in this approximation is



4 M. Ishihara: Chiral phase transition in the linear sigma model in the Tsallis noextensive statistics

defined by

UHF({φjc}, {mj}) := V −1〈HHF〉(β),fq . (18)

The notations {φjc} and {mj} represent the set of φjc
and the set of mj , respectively.

The potential UHF is represented with the annihila-
tion operator ajk for the field ϕj and the energy ωjk:

UHF({φjc}, {mj})

= V −1

{

∑

j

∑

k

ωjk

[

〈a†jkajk〉(β),fq +
1

2

]

+

∫

dx 〈V HF
pot 〉(β),fq −

∑

j

1

2
m2

j

∫

dx〈ϕ2
j 〉(β),fq

}

.

(19)

We use the mass mj on the energy minimum state
(vacuum). For the field φj , we denote the condensate on

the vacuum as φjc and denote the mass on the vacuum
as mj . We note that the mass mj is constant at a fixed
temperature T . That is, the mass mj is not a function
of φjc.

The effective potential U eff is defined by

U eff({φjc}) := UHF({φjc}, {mj}). (20)

The following conditions are adopted to determine the
condensates and masses.

∂

∂φsc
U eff({φjc}) =

∂

∂φsc
UHF({φjc}, {mj})

∣

∣

∣

∣

mj=mj

= 0

(s = 0, 1, · · ·N − 1). (21)

The condensation φjc is the solution of eq. (21). In the
present case, the potential is tilted to the j = 0 direction,
we set φjc = 0 for j 6= 0. Therefore, eq. (21) is reduced
to

∂

∂φ0c
U eff({φjc})

∣

∣

∣

∣

{φ0c=φ0c,φ1c=0,··· ,φ(N−1)c=0}

= 0. (22)

That is, the condensate φ0c is given as the solution of
eq. (22). The condition for the mass mj is

∂2

∂φ2sc
U eff({φjc})

∣

∣

∣

∣

{φ0c=φ0c,φ1c=0,··· ,φ(N−1)c=0}

=
∂2

∂φ2sc
UHF({φjc}, {mj})

∣

∣

∣

∣{φ0c=φ0c,φ1c=0,··· ,φ(N−1)c=0},

{mj=mj}

= m2
s (s = 0, 1, · · · , N − 1). (23)

Equations (22) and (23) are rewritten as follows, because
the first and last terms in the brace of eq. (19) do not

include φjc, while the terms include the masses mj .

∂

∂φ0c
U eff({φjc})

∣

∣

∣

∣

{φ0c=φ0c,φ1c=0,··· ,φ(N−1)c=0}

=
1

V

∂

∂φ0c

∫

dx〈V HF
pot 〉(β),fq

∣

∣

∣

∣{φ0c=φ0c,φ1c=0,··· ,φ(N−1)c=0},

{mj=mj}

= 0. (24a)

∂2

∂φ2sc
U eff({φjc})

∣

∣

∣

∣

{φ0c=φ0c,φ1c=0,··· ,φ(N−1)c=0}

=
1

V

∂2

∂φ2sc

∫

dx〈V HF
pot 〉(β),fq

∣

∣

∣

∣{φ0c=φ0c,φ1c=0,··· ,φ(N−1)c=0},

{mj=mj}

= m2
s. (24b)

With 〈ϕj〉(β),fq = 0, the normalized q-expectation

value of V HF
pot in the free particle approximation, 〈V HF

pot 〉
(β),f
q ,

is given by

〈V HF
pot 〉(β),fq =

λ

4

{

(

φ2c + 〈ϕ2〉(β),fq − v2
)2

+ 4

N−1
∑

i=0

(φic)
2〈ϕ2

i 〉(β),fq

+ 2

N−1
∑

i=0

(

〈ϕ2
i 〉(β),fq

)2
}

−Gφ0c. (25)

Here, we focus on the quantity 〈ϕ2
j 〉

(β),f
q and the re-

moval of the divergent part. The value 〈ϕ2
j 〉

(β),f
q is ex-

plicitly given in eq. (13). Equation (13) contains the
divergent part: the first term of the right-hand side of
eq. (13). In the present calculation, we neglect the diver-
gent terms in the following prescription, as done in the
previous studies [38–40].

We define the expectation value 〈〈O〉〉:

〈〈O〉〉 := 〈: O :〉(β),fq , (26)

where the : O : represents the normal ordering with re-
spect to the creation and annihilation operators with the
mass mj . We note that the removal term is the vac-
uum contribution which is the temperature-dependent,
because mj depends on the (physical) temperature.

In the present calculation, we need to remove the

divergent part from the quantity 〈ϕ2
j 〉

(β),f
q : the quantity

〈〈ϕ2
j 〉〉 is given by

〈〈ϕ2
j 〉〉 = 〈ϕ2

j 〉(β),fq − 1

4π2(βph)2
F (xj ;−1, 0). (27)

We replace 〈ϕ2
j〉

(β),f
q with 〈〈ϕ2

j 〉〉 in 〈V HF
pot 〉

(β),f
q , and denote

the potential after the precedure as V HF,R
pot . We use V HF,R

pot
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instead of 〈V HF
pot 〉

(β),f
q :

V HF,R
pot =

λ

4

{

(

φ2c + 〈〈ϕ2〉〉 − v2
)2

+ 4

N−1
∑

i=0

(φic)
2〈〈ϕ2

i 〉〉

+ 2

N−1
∑

i=0

(

〈〈ϕ2
i 〉〉

)2

}

−Gφ0c. (28)

To simplify eqs. (24a) and (24b) with the replace-

ment from 〈ϕ2
j〉

(β),f
q to 〈〈ϕ2

j 〉〉, we introduce the following
notations.

Kj := 〈〈ϕ2
j 〉〉, (29a)

K :=

N−1
∑

i=0

Kj . (29b)

The quantity Kj depends on the masses, but not the
condensates. Equations (24a) and (24b) are reduced to
the following equations (s 6= 0):

λ
{

(φ0c)
3 + (K + 2K0 − v2)φ0c

}

−G = 0, (30a)

φsc = 0, (30b)

λ
{

3(φ0c)
2 + (K + 2K0 − v2)

}

= m2
0, (30c)

λ
{

(φ0c)
2 + (K + 2Ks − v2)

}

= m2
s, (30d)

where Kj is Kj with mj and K is the sum of Kj . We

finally obtain the equations with Kσ := K0, Kπ := Ks,
mσ := m0, and mπ := ms (s 6= 0):

(φ0c

v

)3

+
[

3
(Kσ

v2

)

+ (N − 1)
(Kπ

v2

)

− 1
](φ0c

v

)

− G

λv3
= 0, (31a)

λ
{

3
(φ0c
v

)2

+
[

3
(Kσ

v2

)

+ (N − 1)
(Kπ

v2

)

− 1
]}

=
(mσ

v

)2

, (31b)

λ
{(φ0c

v

)2

+
[(Kσ

v2

)

+ (N + 1)
(Kπ

v2

)

− 1
]}

=
(mπ

v

)2

, (31c)

where φsc is zero for s 6= 0.
Equation (31a) as a function of (φ0c/v) can be solved.

We represent eq. (31a) as follows:

(φ0c/v)
3 + 3η(φ0c/v) + 2κ = 0, (32)

where κ is negative. The real number solution for η ≥
− 3
√

|κ|2 is represented as

(φ0c/v) =
3

√

−κ+
√

κ2 + η3 +
3

√

−κ−
√

κ2 + η3,

(33a)

where 3
√
−1 = −1. The real number solution for η <

− 3
√

|κ|2 is represented as

(φ0c/v) = 2
√
−η cos(θ/3), (33b)

tan θ =

√

−(κ2 + η3)

−κ (0 < θ < π/2).

The solution represented by eq. (33a) and eq. (33b) is

continuous at η = − 3
√

|κ|2.
In the next section, we solve the equations, eqs. (31b)

and (31c), numerically with eq. (33).

3 Numerical solutions of gap equations

In this section, we attempt to calculate the condensate,
the sigma mass, and the pion mass as a function of
the physical temperature Tph for various q by solving
eqs. (31b) and (31c) with eq. (33).

We set the parameters of the linear sigma model to
generate the pion mass, sigma mass, and pion decay con-
stant: the pion mass is 135 MeV, the sigma mass is 600
MeV, and the pion decay constant is 92.5 MeV. The
number of the field N is set to four. The values of the pa-
rameters, λ, v, and G, are approximately 20, 87.4 MeV,
and (119 MeV)3, respectively. These values generate the
above masses and decay constant.

Figures 1(a), 1(b), and 1(c) show the physical tem-
perature dependences of the condensate, the sigma mass,
and the pion mass for q = 0.9, 1.0, and 1.1, respectively.
The numerical results at q = 1.0 correspond to the re-
sults in the Boltzmann-Gibbs statistics. The behaviors
shown in fig. 1(b) are similar to those shown in the pre-
vious work [38]. As shown in figs. 1(a), 1(b), and 1(c),
the behavior of the condensate at q 6= 1.0 is similar to
that at q = 1.0 (BG statistics). These resemblances are
also seen for the sigma mass and pion mass.

Figure 2 shows the physical temperature dependences
of the condensate for q = 0.9, 1.0, and 1.1. The curves are
similar, and the condensate at q is smaller than that at
q′ for q > q′. Therefore, the chiral symmetry restoration
occurs at low physical temperature for large q, while the
restoration occurs at high physical temperature for small
q.

Figure 3(a) shows the physical temperature depen-
dences of the sigma mass for q = 0.9, 1.0, and 1.1. The
sigma mass decreases, reaches minimum, and increases
after that, as the physical temperature increases. The
sigma mass at q is lighter than that at q′ for q > q′ at
low physical temperature, while the sigma mass at q is
heavier than that at q′ for q > q′ at high physical temper-
ature. This behavior of the sigma mass is explained by
the behavior of the condensate. The decrease of the sigma
mass at low physical temperature for large q implies that
chiral symmetry restoration occurs at low physical tem-
perature for large q.

Figure 3(b) shows the physical temperature depen-
dences of the pion mass for q = 0.9, 1.0, and 1.1. As
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Fig. 1. Physical temperature dependences of the condensate,
sigma mass, and pion mass for (a) q = 0.9, (b) 1.0, and (c)
1.1.
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Fig. 2. Physical temperature dependence of the condensate
for q = 0.9, 1.0, and 1.1.

shown in the figure, the pion mass increases monotoni-
cally with the physical temperature, and the pion mass
at q is heavier than that at q′ for q > q′. The difference
betweeen the mass at q and the mass at q′(6= q) is small
for Tph < 200 MeV, while the difference grows with the
physical temperature for Tph > 200 MeV. This implies
that the effects of the Tsallis nonextensive statistics on
the pion mass are weak at low physical temperature.

4 Discussion and conclusion

We investigated the physical temperature Tph depen-
dences of the condensate, the sigma mass, and the pion
mass in the Tsallis nonextensive statistics of the entropic
parameter q, when the deviation from the Boltzmann-
Gibbs statistics, |1− q|, is small. We applied the Hartree
factorization to the Hamiltonian and free particle ap-
proximation to the normalized q-expectation values of
the squares of the fields. The divergent terms of the nor-
malized q-expectation values were dropped. We solved
the self-consistent equations numerically, and obtained
the physical temperature dependences of the conden-
sates, the sigma mass, and the pion mass for q = 0.9,
1.0, and 1.1.

We found that the condensate at q is smaller than
that at q′ for q > q′. The sigma mass and the pion mass
reflect the value of the condensate. The sigma mass at q
is lighter than that at q′ for q > q′ at low physical tem-
perature, while the mass at q is heavier than that at q′

for q > q′ at high physical temperature. The pion mass is
a monotonically increasing function of the physical tem-
perature, and the pion mass at q is heavier than that at
q′ for q > q′.

These behaviors should be explained by the fact that
the tail of the distribution becomes elongated with q.
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Fig. 3. Physical temperature dependences of (a) the sigma
mass and (b) the pion mass for q = 0.9, 1.0, and 1.1.

The effects of the normalized q-expectation value of the
square of the field is large when the tail of the distribu-
tion is long. Therefore, the modification caused by the
normalized q-expectation value is large for large q. This
indicates that the chiral symmetry restoration occurs at
low physical temperature for large q.

The effects of the Tsallis nonextensive statistics of
small |1 − q| on the pion mass are small for Tph ≤ 200
MeV, as shown in the calculations in the present study.
It is not easy to find the effects of the statistics on the
pion mass at low physical temperature. In other words,
at low physical temperature, the pion mass at q 6= 1 is
close to the mass at q = 1. The effects on the pion mass
may be found at high physical temperature. In contrast,
the effects on the sigma mass appear even for Tph ≤ 200
MeV.

In summary, we studied the effects of the Tsallis nonex-
tensive statistics of small |1 − q| on the condensate, the
sigma mass, and the pion mass. The condensate and the
sigma mass are affected by the statistics. The pion mass
is also affected by the statistics except for Tph ≤ 200
MeV. That is, the effects of the statistics on the pion
mass is small for Tph ≤ 200 MeV.

We hope that this work is helpful for the readers to
study the phase transition within the framework of the
Tsallis nonextensive statistics.

A Hartree Factorization

In this appendix, we summarize the Hartree factorization
[36,37] for this paper to be self-contained. The basic idea
is to represent the operators in quadratic expression.

A.1 Single Field

We begin with a single field ϕ with the constraint 〈ϕ〉 =
0. The operator ϕ2n is approximated by the following
form.

ϕ2n ∼ A(〈ϕ2〉)n−1ϕ2 +B(〈ϕ2〉)n−1〈ϕ〉ϕ+ C(〈ϕ2〉)n.
(34)

The second term vanishes because of the constraint 〈ϕ〉 =
0. We focus on the coefficients A and C.

The coefficient A is obtained by counting the combi-
nation of ϕ. The number of pairs constructed from ϕ2n

is given by 2nC2. It is possible to do this procedure re-
cursively, we find the combination of (n− 1) pairs

2nC2 × 2n−2C2 × · · · × 4C2 =
(2n)(2n− 1) · · · 3

2n−1
=

(2n)!

2n
.

(35)
This is over-counting, and we must divide the value by
the number of the orders of (n− 1) pairs. Therefore, we
get

A =
(2n)!

2n(n− 1)!
. (36)

Next, we approximate 〈ϕ2n〉 by E〈ϕ2〉n. The coefficient
E is obtained in the same manner:

E =
(2n)!

2nn!
. (37)

We obtain the coefficient C by taking the expectation
value of Eq. (34). This gives

〈ϕ2n〉 ∼ E〈ϕ2〉n = (A+ C)〈ϕ2〉n. (38)

The coefficient C is

C = − (2n)!(n− 1)

2nn!
. (39)
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The Hartree factorization of ϕ2n is given by

ϕ2n ∼ (2n)!

2n(n− 1)!
(〈ϕ2〉)n−1ϕ2

− (2n)!(n− 1)

2nn!
(〈ϕ2〉)n (n ≥ 1). (40)

For example, the Hartree factorization of ϕ4 is given by

ϕ4 ∼ 6〈ϕ2〉ϕ2 − 3(〈ϕ2〉)2. (41)

In the same way, we obtain the Hartree factorization
of ϕ2n+1:

ϕ2n+1 ∼ (2n+ 1)!

2nn!
(〈ϕ2〉)nϕ (n ≥ 1). (42)

This gives the Hartree factorization of ϕ3:

ϕ3 ∼ 3〈ϕ2〉ϕ. (43)

A.2 Two Fields

Next, we treat two fields, ϕ and ψ, with 〈ϕ〉 = 0, 〈ψ〉 = 0,
and 〈ϕψ〉 = 0. The Hartree factorization of ϕ2mψ2n and
ϕ2mψ2n+1 are derived in the similar way.

The Hartree factorization of ϕ2mψ2n is given by the
following form.

ϕ2mψ2n ∼ϕ2 terms + ψ2 terms + ϕψ terms

+ 〈ϕ2〉m〈ψ2〉n terms. (44)

The coefficients of ϕ2, ψ2, and ϕψ are constructed from
〈ϕ2〉, 〈ψ2〉, and 〈ϕψ〉. For example, the first term of
eq. (44) may contain several terms such as
〈ϕ2〉m−2〈ψ2〉n−1〈ϕψ〉2ϕ2. However, the term
〈ϕ2〉m−2〈ψ2〉n−1〈ϕψ〉2ϕ2 vanishes because of the assump-
tion 〈ϕψ〉 = 0. The remaining form of the first term
is 〈ϕ2〉m−1〈ψ2〉nϕ2. Therefore, the Hartree factorization
under the present assumptions is given by

ϕ2mψ2n ∼ A(〈ϕ2〉)m−1(〈ψ2〉)nϕ2

+B(〈ϕ2〉)m(〈ψ2〉)n−1ψ2 + C(〈ϕ2〉)m(〈ψ2〉)n.
(45)

The coefficient A in eq. (45) is obtained in the similar
way. The coefficient A is given by

A =
(2m)!

2m(m− 1)!
× (2n)!

2nn!
. (46)

The coefficient B in eq. (45) is given by

B =
(2m)!

2mm!
× (2n)!

2n(n− 1)!
. (47)

The term 〈ϕ2mψ2n〉 is approximated asE(〈ϕ2〉)m(〈ψ2〉)n.
The coefficient E is given by

E =
(2m)!

2mm!
× (2n)!

2nn!
. (48)

We obtain the coefficient C by taking the average of
eq. (45). We get the equation

E = A+B + C. (49)

The final representation of the Hartree factorization of
ϕ2mψ2n with 〈ϕ〉 = 〈ψ〉 = 〈ϕψ〉 = 0 is

ϕ2mψ2n ∼
(

(2m)!

2m(m− 1)!

(2n)!

2nn!

)

(〈ϕ2〉)m−1(〈ψ2〉)nϕ2

+

(

(2m)!

2mm!

(2n)!

2n(n− 1)!

)

(〈ϕ2〉)m(〈ψ2〉)n−1ψ2

− (m+ n− 1)

(

(2m)!

2mm!

(2n)!

2nn!

)

(〈ϕ2〉)m(〈ψ2〉)n.
(50)

The Hartree factorization of ϕ2ψ2 is given with Eq. (50)
with m = n = 1. The factorization is

ϕ2ψ2 ∼ ϕ2〈ψ2〉+ 〈ϕ2〉ψ2 − 〈ϕ2〉〈ψ2〉. (51)

We obtain the Hartree factorization of ϕ2mψ2n+1,
as in the case of ϕ2mψ2n. The Hartree factorization of
ϕ2mψ2n+1 with the assumptions 〈ϕ〉 = 〈ψ〉 = 〈ϕψ〉 = 0
is given by

ϕ2mψ2n+1 ∼ (2m)!

2mm!

(2n+ 1)!

2nn!
(〈ϕ2〉)m(〈ψ2〉)nψ. (52)

This result gives the factorization of ϕ2ψ:

ϕ2ψ ∼ 〈ϕ2〉ψ. (53)

The above discussion will be extended to multi-fields.

References

1. C. Tsallis, Introduction to Nonextensive Statistical Me-

chanics (Springer Science+Business Media, LLC, 2010).
2. C. Tsallis, R. S. Mendes, and A. R. Plastino, “The role

of constraints within generalized nonextensive statistics”,
Physica A 261, 534 (1998).

3. S. Kalyana Rama, “Tsallis statistics: averages and a
physical interpretation of the Lagrange multiplier β”,
Phys. Lett. A 276, 103 (2000).

4. S. Abe, S. Martinez, F. Pennini, and A. Plastino, “Nonex-
tensive thermodynamics relations”, Phys. Lett. A 281,
126 (2001).

5. H. H. Aragão-Rêgo, D. J. Soares, L. S. Lucena,
L. R. da Silva, E. K. Lenzi, and Kwok Sau Fa, “Bose-
Einstein and Fermi-Dirac distributions in nonextensive
Tsallis Statistics: an exact study”, Physica A 317, 199
(2003) .

6. E. Ruthotto, “Physical temperature and the mean-
ing of the q parameter in Tsallis statistics”,
arXiv:cond-mat/0310413.

7. R. Toral, “On the definition of physical temperature and
pressure for nonextensive thermodynamics”, Physica A
317, 209 (2003).

http://arxiv.org/abs/cond-mat/0310413


M. Ishihara: Chiral phase transition in the linear sigma model in the Tsallis noextensive statistics 9

8. H. Suyari, “The Unique Non Self-Referential q-Canonical
Distribution and the Physical Temperature Derived from
the Maximum Entropy Principle in Tsallis Statistics”,
Prog. of Theor. Phys. supplement 162, 79 (2006).

9. W. M. Alberico, A. Lavagno, “Non-extensive statistical
effects in high-energy collisions”, Eur. Phys. J. A 40, 313
(2009).

10. K. Urmossy, G. G. Barnaföldi, and T. S. Biró, “Gener-
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